Width and Trunk of Satellite Knots

Nithin Kavi Wendy Wu Mentor: Zhenkun Li

MIT PRIMES Conference, May 19, 2018

What is a knot?

Definition

A knot is a smooth embedding from S^{1} to \mathbb{R}^{3}, where S^{1} is the unit circle in \mathbb{R}^{2}.

Figure: Figure 8 Knot

Knot Classes

Definition

Two knots are in the same knot class if we can deform one into the other without any self intersection during the deformation.

By convention, a knot class is denoted K while a single knot is denoted k.

Figure: Knots in the Trefoil Knot Class

Transformation

Tori and Meridian Disks

Figure: Solid torus with meridian disk

Figure: Not a meridian disk

Definition

A meridian disk is a disk properly embedded in the solid torus in the way depicted in the first figure.

Local Minima and Maxima of Knots

Height Function

Define $h: \mathbb{R}^{3} \rightarrow \mathbb{R}$ to be the standard height function: $h(x, y, z)=z$.

For any r, the pre-image of r under $h, h^{-1}(r)$ is a horizontal plane.

Critical Points

Under h, knots have local minima and local maxima, known as critical points.

Critical and Regular Levels

Levels

Critical levels are denoted $c_{1}, c_{2}, \ldots, c_{n}$. Regular levels are located between each critical level: $c_{1}<r_{1}<c_{2}<\ldots<c_{n-1}<r_{n-1}<c_{n}$.

Figure: Critical and Regular levels of the trefoil knot

Width and Trunk

$$
\begin{aligned}
& \text { Trunk }=\max (2,4,2)=4 \\
& \text { Width }=2+4+2=8
\end{aligned}
$$

Figure: Width and Trunk of the trefoil knot

- Let ω_{i} be the number of intersections of each regular level with k.
- Width: $\omega(k)=\sum_{i=1}^{n-1} \omega_{i}$.
- Trunk: $\operatorname{tr}(k)=\max _{1 \leq i \leq n-1} \omega_{i}$.
- Knot class width: $\omega(K)=\min _{k \in K} \omega(k)$.
- Knot class trunk: $\operatorname{tr}(K)=\min _{k \in K} \operatorname{tr}(k)$.

Defining Satellite Knots

Knots Inside Solid Torus

- Let V be a solid torus.
- Define \hat{j} as the core of V.
- Let \hat{k} be a knot inside V.

Let f be a smooth embedding from V to \mathbb{R}^{3}, and let $j=f(\hat{j})$ and $k=f(\hat{k})$.

Definition

The knot k is the satellite knot with companion j.

Images of Satellite Knots

$\overline{\underline{I}} \quad \emptyset ด \subset$
$10 / 21$

Winding Number of a Satellite Knot

Definition

The winding number n of a knot is the absolute value of the sum of the signed intersections based on orientation of any meridian disk with the knot.

Figure: Winding Number $n=0$

Wrapping Number of a Satellite Knot

Definition

The wrapping number m of a knot is the minimum number of intersections any meridian disk has with the knot.

Figure: Wrapping Number $m=2$

We always have $m \geq n$.

Motivation

Recall: $\omega(k)$ is the width of $k, \operatorname{tr}(k)$ is the trunk of k, n is the winding number and m is the wrapping number.

Theorem (Guo, Li)

$$
\omega(K) \geq n^{2} \omega(J) .
$$

Theorem (Kavi)

$$
\operatorname{tr}(K) \geq n \cdot \operatorname{tr}(J)
$$

As there are already results for winding number, what about the wrapping number?

Conjecture

$$
\operatorname{tr}(K) \geq \lambda \cdot m \cdot \operatorname{tr}(J) \text { for some } 0<\lambda \leq 1 .
$$

How to bound the trunk of k ?

Figure: Intersection of a regular level with the solid torus

- Trunk number of a knot is the maximum number of intersections any regular level has with the knot.
- Suppose a regular level intersects the solid torus in t pieces $P_{1}, P_{2}, \ldots, P_{t}$.
- Recall if P_{i} is a meridian disk then $\left|P_{i} \cap k\right| \geq m$.
- How many P_{i} are meridian disks?

Arrangement of P_{i} on a plane

- Each P_{i} must have an odd number of boundaries.
- The innermost piece must be a meridian disk and there must be a meridian disk outside as well.

Figure: Two Examples of Invalid Arrangements

Examples of valid Arrangements

Definition

Define $A(t)$ to be an arrangement of t pieces in a plane, and let $\lambda(A(t))$ be the number of meridian disks in such an arrangement.

(a) $\lambda(A(4))=3$

(b) $\lambda(A(5))=4$

Experimental Results

Conjecture

$$
\lambda(A(t)) \geq\left\lfloor\frac{t+3}{2}\right\rfloor .
$$

Figure: Program results

Main Result

- $\lambda(A(t)) \geq\left\lfloor\frac{t+3}{2}\right\rfloor$ proved.
- Note: $\frac{\lambda(A(t))}{t}>\frac{1}{2}$ for all t.

Theorem

If a knot K is a satellite knot with companion knot J and m denotes the wrapping number of k, then $\operatorname{tr}(K)>\frac{1}{2} m \cdot \operatorname{tr}(J)$.

Further Research

Next, we will study the relation between width and wrapping number.
Conjecture

$$
\omega(K)>\frac{1}{4} m^{2} \omega(J) .
$$

Also, we will observe specific satellite knots and determine for which ones we can find a value of λ higher than $\frac{1}{2}$.

Acknowledgements

We would like to thank:

- Our mentor Zhenkun Li for his dedication and guidance.
- MIT PRIMES for providing us with this opportunity.
- The MIT Math Department for their hard work in hosting this program.
- Our parents for supporting us and driving us to MIT every week.

Bibliography

Eilong Guo, Zhenkun Li. Width of a Satellite Knot and its Companion.
https://arxiv.org/pdf/1412.3874.pdf
囯 Derek Davies and Alexander Zupan. Natural Properties of the Trunk of a Knot.
https://arxiv.org/pdf/1608.00019.pdf

