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Background

What is a knot?

Definition

A knot is a smooth embedding from S1 to R3, where S1 is the
unit circle in R2.

Figure: Figure 8 Knot
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Background

Knot Classes

Definition

Two knots are in the same knot class if we can deform one into
the other without any self intersection during the deformation.

By convention, a knot class is denoted K while a single knot is
denoted k.

Figure: Knots in the Trefoil Knot Class
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Background

Transformation
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Background

Tori and Meridian Disks

Figure: Solid torus with meridian
disk

Figure: Not a meridian disk

Definition

A meridian disk is a disk properly embedded in the solid torus in
the way depicted in the first figure.
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Local Minima and Maxima of Knots

Height Function

Define h : R3 → R to be the standard height function:
h(x , y , z) = z .

For any r , the pre-image of r under h, h−1(r) is a horizontal plane.

Critical Points

Under h, knots have local minima and local maxima, known as
critical points.
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Critical and Regular Levels

Levels

Critical levels are denoted c1, c2, . . . , cn. Regular levels are located
between each critical level: c1 < r1 < c2 < . . . < cn−1 < rn−1 < cn.

Figure: Critical and Regular levels of the trefoil knot
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Background

Width and Trunk

Figure: Width and Trunk
of the trefoil knot

Let ωi be the number of
intersections of each regular level
with k .

Width: ω(k) =
n−1∑
i=1

ωi .

Trunk: tr(k) = max
1≤i≤n−1

ωi .

Knot class width: ω(K ) = min
k∈K

ω(k).

Knot class trunk: tr(K ) = min
k∈K

tr(k).
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Defining Satellite Knots

Knots Inside Solid Torus

Let V be a solid torus.

Define ĵ as the core of V .

Let k̂ be a knot inside V .

Let f be a smooth embedding from V to R3, and let j = f (ĵ) and
k = f (k̂).

Definition

The knot k is the satellite knot with companion j .
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Images of Satellite Knots
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Winding Number of a Satellite Knot

Definition

The winding number n of a knot is the absolute value of the sum
of the signed intersections based on orientation of any meridian
disk with the knot.

Figure: Winding Number n = 0
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Background

Wrapping Number of a Satellite Knot

Definition

The wrapping number m of a knot is the minimum number of
intersections any meridian disk has with the knot.

Figure: Wrapping Number m = 2

We always have m ≥ n.
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Project

Motivation

Recall: ω(k) is the width of k , tr(k) is the trunk of k , n is the
winding number and m is the wrapping number.

Theorem (Guo, Li)

ω(K ) ≥ n2ω(J).

Theorem (Kavi)

tr(K ) ≥ n · tr(J).

As there are already results for winding number, what about the
wrapping number?

Conjecture

tr(K ) ≥ λ ·m · tr(J) for some 0 < λ ≤ 1.
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How to bound the trunk of k?

Figure: Intersection of a regular
level with the solid torus

Trunk number of a knot is
the maximum number of
intersections any regular
level has with the knot.

Suppose a regular level
intersects the solid torus in
t pieces P1,P2, . . . ,Pt .

Recall if Pi is a meridian
disk then |Pi ∩ k | ≥ m.

How many Pi are meridian
disks?
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Arrangement of Pi on a plane

Each Pi must have an odd number of boundaries.

The innermost piece must be a meridian disk and there must
be a meridian disk outside as well.

Figure: Two Examples of Invalid Arrangements
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Examples of valid Arrangements

Definition

Define A(t) to be an arrangement of t pieces in a plane, and let
λ(A(t)) be the number of meridian disks in such an arrangement.

(a) λ(A(4)) = 3 (b) λ(A(5)) = 4
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Experimental Results

Conjecture

λ(A(t)) ≥ b t+3
2 c.

Figure: Program results
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Main Result

λ(A(t)) ≥ b t+3
2 c proved.

Note: λ(A(t))
t > 1

2 for all t.

Theorem

If a knot K is a satellite knot with companion knot J and m
denotes the wrapping number of k , then tr(K ) > 1

2m · tr(J).
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Further Research

Next, we will study the relation between width and wrapping
number.

Conjecture

ω(K ) > 1
4m

2ω(J).

Also, we will observe specific satellite knots and determine for
which ones we can find a value of λ higher than 1

2 .
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