Width and Trunk of Satellite Knots

Nithin Kavi Wendy Wu Mentor: Zhenkun Li

MIT PRIMES Conference, May 19, 2018

What is a knot?

Definition

A **knot** is a smooth embedding from S^1 to \mathbb{R}^3 , where S^1 is the unit circle in \mathbb{R}^2 .

Figure: Figure 8 Knot

Knot Classes

Definition

Two knots are in the same **knot class** if we can deform one into the other without any self intersection during the deformation.

By convention, a knot class is denoted K while a single knot is denoted k.

Figure: Knots in the Trefoil Knot Class

Transformation

Width and Trunk of Satellite Knots

Background

Tori and Meridian Disks

Figure: Solid torus with meridian disk

Figure: Not a meridian disk

Definition

A **meridian disk** is a disk properly embedded in the solid torus in the way depicted in the first figure.

Local Minima and Maxima of Knots

Height Function

Define $h : \mathbb{R}^3 \to \mathbb{R}$ to be the standard height function: h(x, y, z) = z.

For any r, the pre-image of r under h, $h^{-1}(r)$ is a horizontal plane.

Critical Points

Under *h*, knots have local minima and local maxima, known as **critical points**.

Critical and Regular Levels

Levels

Critical levels are denoted c_1, c_2, \ldots, c_n . Regular levels are located between each critical level: $c_1 < r_1 < c_2 < \ldots < c_{n-1} < r_n < c_n$.

Figure: Critical and Regular levels of the trefoil knot

Width and Trunk

Trunk = max(2,4,2) = 4

Width = 2 + 4 + 2 = 8

Figure: Width and Trunk of the trefoil knot

 Let ω_i be the number of intersections of each regular level with k.

1

• Width:
$$\omega(k) = \sum_{i=1}^{n-1} \omega_i$$
.

• Trunk:
$$\operatorname{tr}(k) = \max_{1 \leq i \leq n-1} \omega_i$$
.

- Knot class width: $\omega(K) = \min_{k \in K} \omega(k)$.
- Knot class trunk: $tr(K) = \min_{k \in K} tr(k)$.

Defining Satellite Knots

Knots Inside Solid Torus

- Let V be a solid torus.
- Define \hat{j} as the core of V.
- Let \hat{k} be a knot inside V.

Let f be a smooth embedding from V to \mathbb{R}^3 , and let $j = f(\hat{j})$ and $k = f(\hat{k})$.

Definition

The knot k is the **satellite knot** with companion j.

Width and Trunk of Satellite Knots

Background

Images of Satellite Knots

Winding Number of a Satellite Knot

Definition

The **winding number** n of a knot is the absolute value of the sum of the signed intersections based on orientation of any meridian disk with the knot.

Figure: Winding Number n = 0

Wrapping Number of a Satellite Knot

Definition

The wrapping number m of a knot is the minimum number of intersections any meridian disk has with the knot.

Figure: Wrapping Number m = 2

We always have $m \ge n$.

Motivation

Recall: $\omega(k)$ is the width of k, tr(k) is the trunk of k, n is the winding number and m is the wrapping number.

Theorem (Guo, Li)

$$\omega(K) \geq n^2 \omega(J).$$

Theorem (Kavi)

 $\operatorname{tr}(K) \geq n \cdot \operatorname{tr}(J).$

As there are already results for winding number, what about the wrapping number?

Conjecture

$$tr(K) \ge \lambda \cdot m \cdot tr(J)$$
 for some $0 < \lambda \le 1$.

(a)

How to bound the trunk of k?

Figure: Intersection of a regular level with the solid torus

- Trunk number of a knot is the maximum number of intersections any regular level has with the knot.
- Suppose a regular level intersects the solid torus in *t* pieces *P*₁, *P*₂, ..., *P*_t.
- Recall if P_i is a meridian disk then |P_i ∩ k| ≥ m.
- How many *P_i* are meridian disks?

Arrangement of P_i on a plane

- Each P_i must have an odd number of boundaries.
- The innermost piece must be a meridian disk and there must be a meridian disk outside as well.

Figure: Two Examples of Invalid Arrangements

Examples of valid Arrangements

Definition

Define A(t) to be an arrangement of t pieces in a plane, and let $\lambda(A(t))$ be the number of meridian disks in such an arrangement.

Experimental Results

Conjecture

$\lambda(A(t)) \geq \lfloor \frac{t+3}{2} \rfloor.$

Number	of	pieces:	2;	Innermost Circles: 2
Number	of	pieces:	3;	Innermost Circles: 3
Number	of	pieces:	4;	Innermost Circles: 3
Number	of	pieces:	5;	Innermost Circles: 4
Number	of	pieces:	6;	Innermost Circles: 4
Number	of	pieces:	7;	Innermost Circles: 5
Number	of	pieces:	8;	Innermost Circles: 5
Number	of	pieces:	9;	Innermost Circles: 6
Number	of	pieces:	10;	Innermost Circles: 6
Number	of	pieces:	11;	Innermost Circles: 7
Number	of	pieces:	12;	Innermost Circles: 7
Number	of	pieces:	13;	Innermost Circles: 8
Number	of	pieces:	14;	Innermost Circles: 8
Number	of	pieces:	15;	Innermost Circles: 9
Number	of	pieces:	16;	Innermost Circles: 9
Number	of	pieces:	17;	Innermost Circles: 10
Number	of	pieces:	18;	Innermost Circles: 10
Number	of	pieces:	19;	Innermost Circles: 1

Figure: Program results

Main Result

•
$$\lambda(A(t)) \geq \lfloor \frac{t+3}{2} \rfloor$$
 proved.

• Note:
$$\frac{\lambda(A(t))}{t} > \frac{1}{2}$$
 for all t .

Theorem

If a knot K is a satellite knot with companion knot J and m denotes the wrapping number of k, then $tr(K) > \frac{1}{2}m \cdot tr(J)$.

Further Research

Next, we will study the relation between width and wrapping number.

Conjecture $\omega(K) > rac{1}{4}m^2\omega(J).$

Also, we will observe specific satellite knots and determine for which ones we can find a value of λ higher than $\frac{1}{2}$.

Additions

Acknowledgements

We would like to thank:

- Our mentor Zhenkun Li for his dedication and guidance.
- MIT PRIMES for providing us with this opportunity.
- The MIT Math Department for their hard work in hosting this program.
- Our parents for supporting us and driving us to MIT every week.

Additions

Bibliography

- Qilong Guo, Zhenkun Li. Width of a Satellite Knot and its Companion. https://arxiv.org/pdf/1412.3874.pdf
- Derek Davies and Alexander Zupan. Natural Properties of the Trunk of a Knot. https://arxiv.org/pdf/1608.00019.pdf